Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.245
Filtrar
1.
Cells ; 13(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38607087

RESUMO

Neurodegenerative diseases are chronic conditions occurring when neurons die in specific brain regions that lead to loss of movement or cognitive functions. Despite the progress in understanding the mechanisms of this pathology, currently no cure exists to treat these types of diseases: for some of them the only help is alleviating the associated symptoms. Mitochondrial dysfunction has been shown to be involved in the pathogenesis of most the neurodegenerative disorders. The fast and transient permeability of mitochondria (the mitochondrial permeability transition, mPT) has been shown to be an initial step in the mechanism of apoptotic and necrotic cell death, which acts as a regulator of tissue regeneration for postmitotic neurons as it leads to the irreparable loss of cells and cell function. In this study, we review the role of the mitochondrial permeability transition in neuronal death in major neurodegenerative diseases, covering the inductors of mPTP opening in neurons, including the major ones-free radicals and calcium-and we discuss perspectives and difficulties in the development of a neuroprotective strategy based on the inhibition of mPTP in neurodegenerative disorders.


Assuntos
Necrose Dirigida por Permeabilidade Transmembrânica da Mitocôndria , Doenças Neurodegenerativas , Humanos , Mitocôndrias/metabolismo , Morte Celular/fisiologia , Necrose/metabolismo , Doenças Neurodegenerativas/metabolismo
2.
Front Cell Infect Microbiol ; 14: 1361326, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572322

RESUMO

Spinal tuberculosis is a common extrapulmonary type that is often secondary to pulmonary or systemic infections. Mycobacterium tuberculosis infection often leads to the balance of immune control and bacterial persistence. In this study, 64 patients were enrolled and the clinicopathological and immunological characteristics of different age groups were analyzed. Anatomically, spinal tuberculosis in each group mostly occurred in the thoracic and lumbar vertebrae. Imaging before preoperative anti-tuberculosis therapy showed that the proportion of abscesses in the older group was significantly lower than that in the younger and middle-aged groups. However, pathological examination of surgical specimens showed that the proportion of abscesses in the older group was significantly higher than that in the other groups, and there was no difference in the granulomatous inflammation, caseous necrosis, inflammatory necrosis, acute inflammation, exudation, granulation tissue formation, and fibrous tissue hyperplasia. B cell number was significantly lower in the middle-aged and older groups compared to the younger group, while the number of T cells, CD4+ T cells, CD8+ T cells, macrophages, lymphocytes, plasma cells, and NK cells did not differ. Meaningfully, we found that the proportion of IL-10 high expression and TGF-ß1 positive in the older group was significantly higher than that in the younger group. TNF-α, CD66b, IFN-γ, and IL-6 expressions were not different among the three groups. In conclusion, there are some differences in imaging, pathological, and immune features of spinal tuberculosis in different age groups. The high expression of IL-10 and TGF-ß1 in older patients may weaken their anti-tuberculosis immunity and treatment effectiveness.


Assuntos
Mycobacterium tuberculosis , Tuberculose da Coluna Vertebral , Pessoa de Meia-Idade , Humanos , Idoso , Interleucina-10/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Tuberculose da Coluna Vertebral/tratamento farmacológico , Tuberculose da Coluna Vertebral/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Abscesso/tratamento farmacológico , Abscesso/metabolismo , Antituberculosos/uso terapêutico , Necrose/tratamento farmacológico , Necrose/metabolismo , Linfócitos T CD4-Positivos , Citocinas/metabolismo
3.
Zhonghua Gan Zang Bing Za Zhi ; 32(3): 279-283, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38584115

RESUMO

Hepatic sinusoidal obstruction syndrome (HSOS) is a type of secondary vascular disease of the liver that is mainly associated with the ingestion of pyrrole alkaloids (PAs) and hematopoietic stem cell transplantation (HSCT) treatment, resulting in severe liver dysfunction, multiple organ failure, and even death. Hepatic sinusoidal dilatation and obstruction, hepatocyte coagulative necrosis, and hepatic lobular inflammation are the main pathological manifestations of HSOS. The key initiating process for the pathogenesis of HSOS is damage to liver sinusoidal endothelial cells (LSECs). Currently, it is believed that LSECs are damaged by the involvement of multiple etiologies and mechanisms, and secondary coagulation and fibrinolysis disorders, oxidative stress, and inflammatory responses are the occurrence contributors to HSOS; however, the mechanism has not been fully elucidated. Therefore, the role of immune-inflammatory mechanisms has received increasing attention in LSEC damage. This article provides an overview of the epidemiology, etiology, and pathological changes of HSOS and reviews the physiological functions, common etiological damage mechanisms, and the key role of LSEC damage in the pathogenesis of HSOS, with a special focus on the role and research progress of immune-inflammatory mechanisms for LSEC damage in recent years. Furthermore, we believe that in-depth study and elucidation of the role of immune-inflammatory mechanisms in LSEC damage and the pathogenesis of HSOS and diagnosis will provide feasible research and development ideas for the screening and identification of new markers and drug treatment targets for HSOS.


Assuntos
Hepatopatia Veno-Oclusiva , Hepatopatias , Humanos , Hepatopatia Veno-Oclusiva/etiologia , Hepatopatia Veno-Oclusiva/diagnóstico , Células Endoteliais , Hepatopatias/patologia , Fígado/patologia , Necrose/metabolismo , Necrose/patologia
4.
Immunity ; 57(3): 429-445, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38479360

RESUMO

Diverse inflammatory conditions, from infections to autoimmune disease, are often associated with cellular damage and death. Apoptotic cell death has evolved to minimize its inflammatory potential. By contrast, necrotic cell death via necroptosis and pyroptosis-driven by membrane-damaging MLKL and gasdermins, respectively-can both initiate and propagate inflammatory responses. In this review, we provide insights into the function and regulation of MLKL and gasdermin necrotic effector proteins and drivers of plasma membrane rupture. We evaluate genetic evidence that MLKL- and gasdermin-driven necrosis may either provide protection against, or contribute to, disease states in a context-dependent manner. These cumulative insights using gene-targeted mice underscore the necessity for future research examining pyroptotic and necroptotic cell death in human tissue, as a basis for developing specific necrotic inhibitors with the potential to benefit a spectrum of pathological conditions.


Assuntos
Apoptose , Gasderminas , Humanos , Animais , Camundongos , Necrose/metabolismo , Apoptose/fisiologia , Piroptose/fisiologia , Morte Celular , Inflamassomos/metabolismo , Proteínas Quinases/metabolismo
5.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38474152

RESUMO

Necroptosis, a form of necrosis, and alterations in mitochondrial dynamics, a coordinated process of mitochondrial fission and fusion, have been implicated in the pathogenesis of cardiovascular diseases. This study aimed to determine the role of mitochondrial morphology in canonical necroptosis induced by a combination of TNFα and zVAD (TNF/zVAD) in H9c2 cells, rat cardiomyoblasts. Time-course analyses of mitochondrial morphology showed that mitochondria were initially shortened after the addition of TNF/zVAD and then their length was restored, and the proportion of cells with elongated mitochondria at 12 h was larger in TNF/zVAD-treated cells than in non-treated cells (16.3 ± 0.9% vs. 8.0 ± 1.2%). The knockdown of dynamin-related protein 1 (Drp1) and fission 1, fission promoters, and treatment with Mdivi-1, a Drp-1 inhibitor, had no effect on TNF/zVAD-induced necroptosis. In contrast, TNF/zVAD-induced necroptosis was attenuated by the knockdown of mitofusin 1/2 (Mfn1/2) and optic atrophy-1 (Opa1), proteins that are indispensable for mitochondrial fusion, and the attenuation of necroptosis was not canceled by treatment with Mdivi-1. The expression of TGFß-activated kinase (TAK1), a negative regulator of RIP1 activity, was upregulated and the TNF/zVAD-induced RIP1-Ser166 phosphorylation, an index of RIP1 activity, was mitigated by the knockdown of Mfn1/2 or Opa1. Pharmacological TAK1 inhibition attenuated the protection afforded by Mfn1/2 and Opa1 knockdown. In conclusion, the inhibition of mitochondrial fusion increases TAK1 expression, leading to the attenuation of canonical necroptosis through the suppression of RIP1 activity.


Assuntos
Dinâmica Mitocondrial , Necroptose , Ratos , Animais , Regulação para Baixo , Necrose/metabolismo , Mitocôndrias/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
6.
Adv Exp Med Biol ; 1444: 129-143, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38467977

RESUMO

Necroptosis is a regulated form of cell death involved in the development of various pathological conditions. In contrast to apoptosis, plasma membrane rupture (PMR) occurs in cells in the relatively early stage of necroptosis; therefore, necroptosis induces a strong inflammatory response. Stimuli, including tumor necrosis factor (TNF), interferon (IFN)α/ß, lipopolysaccharide, polyI:C, and viral infection, induce the formation of necrosomes that lead to membrane rupture and the release of intracellular contents, termed danger-associated molecular patterns (DAMPs). DAMPs are the collective term for molecules that normally reside in the cytoplasm or nucleus in living cells without inducing inflammation but induce strong inflammatory responses when released outside cells. Recent studies have provided a better understanding of the mechanisms underlying PMR and the release of DAMPs. Moreover, necroptosis is involved in various pathological conditions, and mutations in necroptosis-related genes can cause hereditary autoinflammatory syndromes. Thus, manipulating necroptosis signaling pathways may be useful for treating diseases involving necroptosis.


Assuntos
Apoptose , Necroptose , Humanos , Necrose/metabolismo , Apoptose/fisiologia , Morte Celular , Fator de Necrose Tumoral alfa/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
7.
Biomed Pharmacother ; 173: 116340, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428308

RESUMO

The current study investigated the ameliorating impact of GA water extract (GAE) on CCl4-induced nephrotoxicity in renal cells and tissue by comparing its effectiveness with the Ketosteril (Ks) drug in restoring oxidative stress and necroinflammation. The cell morphology, necrosis, and redox state were evaluated in Vero cells. The influence of GAE on CCl4-induced oxidative stress, inflammation, and necrosis was examined in rats. The predicted inhibitory mechanism of GAE phenolic constituents against COX-2 and iNOS was also studied. The results revealed that GAE contains crucial types of phenolic acids, which are associated with its antiradical activities. GAE improved CCl4-induced Vero cell damage and restored renal architecture damage, total antioxidant capacity, ROS, TBARS, NO, GSH, GPX, SOD, and MPO in rats. GAE downregulated the gene expression of renal NF-κB, TNF-α, iNOS, and COX-2, as well as kidney injury molecule-1 (KIM-1) in rats. The GAE improved blood urea, creatinine, cholesterol, and reducing power. The computational analysis revealed the competitive inhibitory mechanism of selected phenolic composites of GAE on COX-2 and iNOS activities. The GAE exhibited higher potency than Ks in most of the studied parameters, as observed by the heatmap plots. Thus, GAE is a promising extract for the treatment of kidney toxicity.


Assuntos
NF-kappa B , Insuficiência Renal , Chlorocebus aethiops , Ratos , Animais , NF-kappa B/metabolismo , Tetracloreto de Carbono/toxicidade , Goma Arábica , Células Vero , Ciclo-Oxigenase 2/metabolismo , Antioxidantes/farmacologia , Estresse Oxidativo , Insuficiência Renal/metabolismo , Oxirredução , Rim/metabolismo , Necrose/metabolismo
8.
Sci Rep ; 14(1): 6751, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514795

RESUMO

Mitochondrial Ca2+ overload can mediate mitochondria-dependent cell death, a major contributor to several human diseases. Indeed, Duchenne muscular dystrophy (MD) is driven by dysfunctional Ca2+ influx across the sarcolemma that causes mitochondrial Ca2+ overload, organelle rupture, and muscle necrosis. The mitochondrial Ca2+ uniporter (MCU) complex is the primary characterized mechanism for acute mitochondrial Ca2+ uptake. One strategy for preventing mitochondrial Ca2+ overload is deletion of the Mcu gene, the pore forming subunit of the MCU-complex. Conversely, enhanced MCU-complex Ca2+ uptake is achieved by deleting the inhibitory Mcub gene. Here we show that myofiber-specific Mcu deletion was not protective in a mouse model of Duchenne MD. Specifically, Mcu gene deletion did not reduce muscle histopathology, did not improve muscle function, and did not prevent mitochondrial Ca2+ overload. Moreover, myofiber specific Mcub gene deletion did not augment Duchenne MD muscle pathology. Interestingly, we observed MCU-independent Ca2+ uptake in dystrophic mitochondria that was sufficient to drive mitochondrial permeability transition pore (MPTP) activation and skeletal muscle necrosis, and this same type of activity was observed in heart, liver, and brain mitochondria. These results demonstrate that mitochondria possess an uncharacterized MCU-independent Ca2+ uptake mechanism that is sufficient to drive MPTP-dependent necrosis in MD in vivo.


Assuntos
Distrofia Muscular de Duchenne , Animais , Humanos , Camundongos , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Morte Celular , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Distrofia Muscular de Duchenne/patologia , Necrose/metabolismo
9.
Int Immunopharmacol ; 130: 111732, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38402834

RESUMO

Fulminant hepatic failure (FHF) is the terminal phase of acute liver injury, which is characterized by massive hepatocyte necrosis and rapid hepatic dysfunction in patients without preexisting liver disease. There are currently no therapeutic options for such a life-threatening hepatic failure except liver transplantation; therefore, the terminal phase of the underlying acute liver injury should be avoided. Tomatidine (TOM), asteroidal alkaloid, may have different biological activities, including antioxidant and anti-inflammatory effects. Herein, the lipopolysaccharide (LPS)/D-galactosamine (D-GalN)-induced FHF mouse model was established to explore the protective potential of TOM and the underlying mechanisms of action. TOM pretreatment significantly inhibited hepatocyte necrosis and decreased serum aminotransferase activities in LPS/D-GalN-stimulated mice. TOM further increased the level of different antioxidant enzymes while reducing lipid peroxidation biomarkers in the liver. These beneficial effects of TOM were shown to be associated with targeting of NF-κB signaling pathways, where TOM repressed NF-κB activation and decreased LPS/D-GalN-induced TNF-α, IL-6, IL-1ß, and iNOS production. Moreover, TOM prevented LPS/D-GalN-induced upregulation of Keap1 expression and downregulation of Nrf2 and HO-1 expression, leading to increased Nrf2-binding activity and HO-1 levels. Besides, TOM pretreatment repressed LPS/D-GalN-induced upregulation of proliferating cell nuclear antigen (PCNA) expression, which spared the hepatocytes from damage and subsequent repair following the LPS/D-GalN challenge. Collectively, our findings revealed that TOM has a protective effect on LPS/D-GalN-induced FHF in mice, showing powerful antioxidant and anti-inflammatory effects, primarily mediated via modulating Keap1/Nrf2/HO-1 and NF-κB/TNF-α/IL-6/IL-1ß/iNOS signaling pathways.


Assuntos
Falência Hepática Aguda , NF-kappa B , Tomatina/análogos & derivados , Humanos , Camundongos , Animais , NF-kappa B/metabolismo , Antioxidantes/farmacologia , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/tratamento farmacológico , Falência Hepática Aguda/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Lipopolissacarídeos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Transdução de Sinais , Fígado , Estresse Oxidativo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Anti-Inflamatórios/farmacologia , Necrose/metabolismo , Galactosamina/farmacologia
10.
Environ Toxicol ; 39(5): 2970-2979, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38314619

RESUMO

Cyclizine, an over-the-counter and prescription antihistamine, finds widespread application in the prevention and treatment of motion sickness, encompassing symptoms such as nausea, vomiting, dizziness, along with its effectiveness in managing vertigo. However, the overuse or misuse of cyclizine may lead to hallucinations, confusion, tachycardia, and hypertension. The molecular mechanisms underlying cyclizine-induced cytotoxicity and apoptosis remain unclear. During the 24 h incubation duration, RAW264.7 macrophages were exposed to different concentrations of cyclizine. Cytotoxicity was assessed through the lactate dehydrogenase assay. Flow cytometry employing annexin V-fluorescein isothiocyanate and propidium iodide was utilized to evaluate apoptosis and necrosis. Caspase activity and mitochondrial dysfunction were evaluated through a fluorogenic substrate assay and JC-1 dye, respectively. Flow cytometry employing fluorogenic antibodies was utilized to evaluate the release of cytochrome c and expression of death receptor, including tumor necrosis factor-α receptor and Fas receptor. Western blotting was utilized to evaluate the expression of the Bcl2 and Bad apoptotic regulatory proteins. The findings unveiled from the present study demonstrated that cyclizine exerted a concentration-dependent effect on RAW264.7 macrophages, leading to the induction of cytotoxicity, apoptosis, and necrosis. This compound further activated the intrinsic apoptotic pathway by inducing mitochondrial dysfunction, Bcl2/Bad exchange expression, cytochrome c liberation, and activation of caspases contained caspase 3, 8, and 9. Moreover, the activation of the extrinsic apoptotic pathway was observed as cyclizine induced the upregulation of death receptors and increased caspase activities. Based on our investigations, it can be inferred that cyclizine prompts cytotoxicity and apoptosis in RAW264.7 macrophages in a concentration-dependent manner by triggering both the intrinsic and extrinsic apoptotic pathways.


Assuntos
Ciclizina , Doenças Mitocondriais , Humanos , Ciclizina/metabolismo , Ciclizina/farmacologia , Citocromos c/metabolismo , Mitocôndrias/metabolismo , Apoptose , Caspases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Macrófagos , Necrose/metabolismo , Doenças Mitocondriais/metabolismo
11.
EMBO J ; 43(7): 1164-1186, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38396301

RESUMO

Ferroptosis is a regulated form of necrotic cell death caused by iron-dependent accumulation of oxidized phospholipids in cellular membranes, culminating in plasma membrane rupture (PMR) and cell lysis. PMR is also a hallmark of other types of programmed necrosis, such as pyroptosis and necroptosis, where it is initiated by dedicated pore-forming cell death-executing factors. However, whether ferroptosis-associated PMR is also actively executed by proteins or driven by osmotic pressure remains unknown. Here, we investigate a potential ferroptosis role of ninjurin-1 (NINJ1), a recently identified executor of pyroptosis-associated PMR. We report that NINJ1 oligomerizes during ferroptosis, and that Ninj1-deficiency protects macrophages and fibroblasts from ferroptosis-associated PMR. Mechanistically, we find that NINJ1 is dispensable for the initial steps of ferroptosis, such as lipid peroxidation, channel-mediated calcium influx, and cell swelling. In contrast, NINJ1 is required for early loss of plasma membrane integrity, which precedes complete PMR. Furthermore, NINJ1 mediates the release of cytosolic proteins and danger-associated molecular pattern (DAMP) molecules from ferroptotic cells, suggesting that targeting NINJ1 could be a therapeutic option to reduce ferroptosis-associated inflammation.


Assuntos
Alarminas , Ferroptose , Humanos , Necrose/metabolismo , Morte Celular , Membrana Celular/metabolismo , Fatores de Crescimento Neural/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo
12.
Int J Mol Med ; 53(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38390952

RESUMO

Calcium overload, a notable instigator of acute pancreatitis (AP), induces oxidative stress and an inflammatory cascade, subsequently activating both endogenous and exogenous apoptotic pathways. However, there is currently lack of available pharmaceutical interventions to alleviate AP by addressing calcium overload. In the present study, the potential clinical application of liposome nanoparticles (LNs) loaded with 1,2­bis(2­aminophenoxy)ethane­N,N,N',N'­tetraacetic acid tetrakis (acetoxymethyl ester) (BAPTA­AM), a cell­permeant calcium chelator, was investigated as a therapeutic approach for the management of AP. To establish the experimental models in vitro, AR42J cells were exposed to high glucose/sodium oleate (HGO) to induce necrosis, and in vivo, intra­ductal taurocholate (TC) infusion was used to induce AP. The findings of the present study indicated that the use of BAPTA­AM­loaded LN (BLN) effectively and rapidly eliminated excessive Ca2+ and reactive oxygen species, suppressed mononuclear macrophage activation and the release of inflammatory cytokines, and mitigated pancreatic acinar cell apoptosis and necrosis induced by HGO. Furthermore, the systemic administration of BLN demonstrated promising therapeutic potential in the rat model of AP. Notably, BLN significantly enhanced the survival rates of rats subjected to the TC challenge, increasing from 37.5 to 75%. This improvement was attributed to the restoration of pancreatic function, as indicated by improved blood biochemistry indices and alleviation of pancreatic lesions. The potential therapeutic efficacy of BLN in rescuing patients with AP is likely attributed to its capacity to inhibit oxidative stress, prevent premature activation of zymogens and downregulate the expression of TNF­α, IL­6 and cathepsin B. Thus, BLN demonstrated promising value as a novel therapeutic approach for promptly alleviating the burden of intracellular Ca2+ overload in patients with AP.


Assuntos
Ácido Egtázico/análogos & derivados , Pancreatite , Humanos , Ratos , Animais , Pancreatite/metabolismo , Lipossomos/metabolismo , Cálcio/metabolismo , Doença Aguda , Células Acinares/patologia , Necrose/metabolismo
13.
J Mol Med (Berl) ; 102(4): 495-505, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38393662

RESUMO

Morphologically, cell death can be divided into apoptosis and necrosis. Apoptosis, which is a type of regulated cell death, is well tolerated by the immune system and is responsible for hemostasis and cellular turnover under physiological conditions. In contrast, necrosis is defined as a form of passive cell death that leads to a dramatic inflammatory response (also referred to as necroinflammation) and causes organ dysfunction under pathological conditions. Recently, a novel form of cell death named regulated necrosis (such as necroptosis, pyroptosis, and ferroptosis) was discovered. Distinct from apoptosis, regulated necrosis is modulated by multiple internal or external factors, but meanwhile, it results in inflammation and immune response. Accumulating evidence has indicated that regulated necrosis is associated with multiple diseases, including diabetes. Diabetes is characterized by hyperglycemia caused by insulin deficiency and/or insulin resistance, and long-term high glucose leads to various diabetes-related complications. Here, we summarize the mechanisms of necroptosis, pyroptosis, and ferroptosis, and introduce recent advances in characterizing the associations between these three types of regulated necrosis and diabetes and its complications.


Assuntos
Apoptose , Diabetes Mellitus , Humanos , Necrose/metabolismo , Necrose/patologia , Apoptose/fisiologia , Morte Celular/fisiologia , Piroptose
14.
Glia ; 72(6): 1016-1053, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38173414

RESUMO

Microglia play key roles in the post-ischemic inflammatory response and damaged tissue removal reacting rapidly to the disturbances caused by ischemia and working to restore the lost homeostasis. However, the modified environment, encompassing ionic imbalances, disruption of crucial neuron-microglia interactions, spreading depolarization, and generation of danger signals from necrotic neurons, induce morphological and phenotypic shifts in microglia. This leads them to adopt a proinflammatory profile and heighten their phagocytic activity. From day three post-ischemia, macrophages infiltrate the necrotic core while microglia amass at the periphery. Further, inflammation prompts a metabolic shift favoring glycolysis, the pentose-phosphate shunt, and lipid synthesis. These shifts, combined with phagocytic lipid intake, drive lipid droplet biogenesis, fuel anabolism, and enable microglia proliferation. Proliferating microglia release trophic factors contributing to protection and repair. However, some microglia accumulate lipids persistently and transform into dysfunctional and potentially harmful foam cells. Studies also showed microglia that either display impaired apoptotic cell clearance, or eliminate synapses, viable neurons, or endothelial cells. Yet, it will be essential to elucidate the viability of engulfed cells, the features of the local environment, the extent of tissue damage, and the temporal sequence. Ischemia provides a rich variety of region- and injury-dependent stimuli for microglia, evolving with time and generating distinct microglia phenotypes including those exhibiting proinflammatory or dysfunctional traits and others showing pro-repair features. Accurate profiling of microglia phenotypes, alongside with a more precise understanding of the associated post-ischemic tissue conditions, is a necessary step to serve as the potential foundation for focused interventions in human stroke.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Humanos , Microglia/metabolismo , Células Endoteliais/metabolismo , Acidente Vascular Cerebral/metabolismo , Necrose/metabolismo , Isquemia/metabolismo , Lipídeos , Isquemia Encefálica/metabolismo , Fagocitose
15.
Proc Natl Acad Sci U S A ; 121(4): e2309628121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38227660

RESUMO

Human bone marrow failure (BMF) syndromes result from the loss of hematopoietic stem and progenitor cells (HSPC), and this loss has been attributed to cell death; however, the cell death triggers, and mechanisms remain unknown. During BMF, tumor necrosis factor-α (TNFα) and interferon-γ (IFNγ) increase. These ligands are known to induce necroptosis, an inflammatory form of cell death mediated by RIPK1, RIPK3, and MLKL. We previously discovered that mice with a hematopoietic RIPK1 deficiency (Ripk1HEM KO) exhibit inflammation, HSPC loss, and BMF, which is partially ameliorated by a RIPK3 deficiency; however, whether RIPK3 exerts its effects through its function in mediating necroptosis or other forms of cell death remains unclear. Here, we demonstrate that similar to a RIPK3 deficiency, an MLKL deficiency significantly extends survival and like Ripk3 deficiency partially restores hematopoiesis in Ripk1HEM KO mice revealing that both necroptosis and apoptosis contribute to BMF in these mice. Using mouse models, we show that the nucleic acid sensor Z-DNA binding protein 1 (ZBP1) is up-regulated in mouse RIPK1-deficient bone marrow cells and that ZBP1's function in endogenous nucleic acid sensing is necessary for HSPC death and contributes to BMF. We also provide evidence that IFNγ mediates HSPC death in Ripk1HEM KO mice, as ablation of IFNγ but not TNFα receptor signaling significantly extends survival of these mice. Together, these data suggest that RIPK1 maintains hematopoietic homeostasis by preventing ZBP1 activation and induction of HSPC death.


Assuntos
Ácidos Nucleicos , Pancitopenia , Animais , Humanos , Camundongos , Apoptose/genética , Transtornos da Insuficiência da Medula Óssea , Morte Celular/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Necrose/metabolismo , Ácidos Nucleicos/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
16.
Cell Death Dis ; 15(1): 77, 2024 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245534

RESUMO

Plasma membrane accumulation of phosphorylated mixed lineage kinase domain-like (MLKL) is a hallmark of necroptosis, leading to membrane rupture and inflammatory cell death. Pro-death functions of MLKL are tightly controlled by several checkpoints, including phosphorylation. Endo- and exocytosis limit MLKL membrane accumulation and counteract necroptosis, but the exact mechanisms remain poorly understood. Here, we identify linear ubiquitin chain assembly complex (LUBAC)-mediated M1 poly-ubiquitination (poly-Ub) as novel checkpoint for necroptosis regulation downstream of activated MLKL in cells of human origin. Loss of LUBAC activity inhibits tumor necrosis factor α (TNFα)-mediated necroptosis, not by affecting necroptotic signaling, but by preventing membrane accumulation of activated MLKL. Finally, we confirm LUBAC-dependent activation of necroptosis in primary human pancreatic organoids. Our findings identify LUBAC as novel regulator of necroptosis which promotes MLKL membrane accumulation in human cells and pioneer primary human organoids to model necroptosis in near-physiological settings.


Assuntos
Necroptose , Proteínas Quinases , Humanos , Necrose/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Fosforilação , Morte Celular , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Apoptose/fisiologia
17.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38279236

RESUMO

This study aimed to assess the influence of ischemic preconditioning (IP) on hypoxia/reoxygenation (HR)-induced endothelial cell (EC) death. Human umbilical vein endothelial cells (HUVECs) were subjected to 2 or 6 h hypoxia with subsequent reoxygenation. IP was induced by 20 min of hypoxia followed by 20 min of reoxygenation. Necrosis was assessed by the release of lactate dehydrogenase (LDH) and apoptosis by double staining with propidium iodide/annexin V (PI/AV), using TUNEL test, and Bcl-2 and Bax gene expression measured using RT-PCR. In PI/AV staining, after 24 h of reoxygenation, 30-33% of EC were necrotic and 16-21% were apoptotic. In comparison to HR cells, IP reduced membrane apoptosis after 24 h of reoxygenation by 50% but did not influence EC necrosis. Nuclear EC apoptosis affected about 15-17% of EC after 24 h of reoxygenation and was reduced with IP by 55-60%. IP was associated with a significantly higher Bcl-2/Bax ratio, at 8 h 2-4 times and at 24 h 2-3 times as compared to HR. Longer hypoxia was associated with lower values of Bcl-2/Bax ratio in EC subjected to HR or IP. IP delays, without reducing, the extent of HR-induced EC necrosis but significantly inhibits their multi-level evaluated apoptosis.


Assuntos
Apoptose , Precondicionamento Isquêmico , Humanos , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Necrose/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Hipóxia/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Hipóxia Celular
18.
Arterioscler Thromb Vasc Biol ; 44(1): 218-237, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37970714

RESUMO

BACKGROUND: The formation of large necrotic cores results in vulnerable atherosclerotic plaques, which can lead to severe cardiovascular diseases. However, the specific regulatory mechanisms underlying the development of necrotic cores remain unclear. METHODS: To evaluate how the modes of lesional cell death are reprogrammed during the development of atherosclerosis, the expression levels of key proteins that are involved in the necroptotic, apoptotic, and pyroptotic pathways were compared between different stages of plaques in humans and mice. Luciferase assays and loss-of-function studies were performed to identify the microRNA-mediated regulatory mechanism that protects foamy macrophages from necroptotic cell death. The role of this mechanism in atherosclerosis was determined by using a knockout mouse model with perivascular drug administration and tail vein injection of microRNA inhibitors in Apoe-/- mice. RESULTS: Here, we demonstrate that the necroptotic, rather than the apoptotic or pyroptotic, pathway is more activated in advanced unstable plaques compared with stable plaques in both humans and mice, which closely correlates with necrotic core formation. The upregulated expression of Ripk3 (receptor-interacting protein kinase 3) promotes the C/EBPß (CCAAT/enhancer binding protein beta)-dependent transcription of the microRNA miR-223-3p, which conversely inhibits Ripk3 expression and forms a negative feedback loop to regulate the necroptosis of foamy macrophages. The knockout of the Mir223 gene in bone marrow cells accelerates atherosclerosis in Apoe-/- mice, but this effect can be rescued by Ripk3 deficiency or treatment with the necroptosis inhibitors necrostatin-1 and GSK-872. Like the Mir223 knockout, treating Apoe-/- mice with miR-223-3p inhibitors increases atherosclerosis. CONCLUSIONS: Our study suggests that miR-223-3p expression in macrophages protects against atherosclerotic plaque rupture by limiting the formation of necrotic cores, thus providing a potential microRNA therapeutic candidate for atherosclerosis.


Assuntos
Aterosclerose , MicroRNAs , Placa Aterosclerótica , Humanos , Animais , Camundongos , Retroalimentação , Aterosclerose/genética , Aterosclerose/prevenção & controle , Aterosclerose/metabolismo , Placa Aterosclerótica/metabolismo , Macrófagos/metabolismo , Necrose/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Camundongos Knockout , Apolipoproteínas E , Camundongos Endogâmicos C57BL , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
19.
Cell Death Differ ; 31(1): 119-131, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38001256

RESUMO

Paracetamol (acetaminophen, APAP) overdose severely damages mitochondria and triggers several apoptotic processes in hepatocytes, but the final outcome is fulminant necrotic cell death, resulting in acute liver failure and mortality. Here, we studied this switch of cell death modes and demonstrate a non-canonical role of the apoptosis-regulating BCL-2 homolog BIM/Bcl2l11 in promoting necrosis by regulating cellular bioenergetics. BIM deficiency enhanced total ATP production and shifted the bioenergetic profile towards glycolysis, resulting in persistent protection from APAP-induced liver injury. Modulation of glucose levels and deletion of Mitofusins confirmed that severe APAP toxicity occurs only in cells dependent on oxidative phosphorylation. Glycolytic hepatocytes maintained elevated ATP levels and reduced ROS, which enabled lysosomal recycling of damaged mitochondria by mitophagy. The present study highlights how metabolism and bioenergetics affect drug-induced liver toxicity, and identifies BIM as important regulator of glycolysis, mitochondrial respiration, and oxidative stress signaling.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Humanos , Acetaminofen/toxicidade , Fígado/metabolismo , Hepatócitos/metabolismo , Metabolismo Energético , Proteína 11 Semelhante a Bcl-2/genética , Proteína 11 Semelhante a Bcl-2/metabolismo , Necrose/metabolismo , Estresse Oxidativo , Trifosfato de Adenosina/metabolismo , Mitocôndrias Hepáticas/metabolismo
20.
Hum Reprod ; 39(2): 310-325, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38011909

RESUMO

STUDY QUESTION: What is the mechanism behind cryoinjury in human sperm, particularly concerning the interplay between reactive oxygen species (ROS) and autophagy, and how does it subsequently affect sperm fate? SUMMARY ANSWER: The freeze-thaw operation induces oxidative stress by generating abundant ROS, which impairs sperm motility and activates autophagy, ultimately guiding the sperm toward programmed cell death such as apoptosis and necrosis, as well as triggering premature capacitation. WHAT IS KNOWN ALREADY: Both ROS-induced oxidative stress and autophagy are thought to exert an influence on the quality of frozen-thawed sperm. STUDY DESIGN, SIZE, DURATION: Overall, 84 semen specimens were collected from young healthy fertile males, with careful quality evaluation. The specimens were split into three groups to investigate the ROS-induced cryoinjury: normal control without any treatment, sperm treated with 0.5 mM hydrogen peroxide (H2O2) for 1 h, and sperm thawed following cryopreservation. Samples from 48 individuals underwent computer-assisted human sperm analysis (CASA) to evaluate sperm quality in response to the treatments. Semen samples from three donors were analyzed for changes in the sperm proteome after H2O2 treatment, and another set of samples from three donors were analyzed for changes following the freeze-thaw process. The other 30 samples were used for fluorescence-staining and western blotting. PARTICIPANTS/MATERIALS, SETTING, METHODS: Sperm motility parameters, including progressive motility (PR %) and total motility (PR + NP %), were evaluated using the CASA system on a minimum of 200 spermatozoa. The proteomic profiles were determined with label-free mass spectrometry (MS/MS) and protein identification was performed via ion search against the NCBI human database. Subsequently, comprehensive bioinformatics was applied to detect significant proteomic changes and functional enrichment. Fluorescence-staining and western blot analyses were also conducted to confirm the proteomic changes on selected key proteins. The ROS level was measured using 2',7'-dichlorodihydrofluorescein diacetate labeling and the abundance of bioactive mitochondria was determined by evaluating the inner mitochondrial membrane potential (MMP) level. Molecular behaviors of sequestosome-1 (p62 or SQSTM1) and microtubule-associated proteins 1A/1B light chain 3 (LC3) were monitored to evaluate the state of apoptosis in human sperm. Fluorescent probes oxazole yellow (YO-PRO-1) and propidium iodide (PI) were utilized to monitor programmed cell death, namely apoptosis and necrosis. Additionally, gradient concentrations of antioxidant coenzyme Q10 (CoQ10) were introduced to suppress ROS impacts on sperm. MAIN RESULTS AND THE ROLE OF CHANCE: The CASA analysis revealed a significant decrease in sperm motility for both the H2O2-treatment and freeze-thaw groups. Fluorescence staining showed that high ROS levels were produced in the treated sperm and the MMPs were largely reduced. The introduction of CoQ10 at concentrations of 20 and 30 µM resulted in a significant rescue of progressive motility (P < 0.05). The result suggested that excessive ROS could be the major cause of sperm motility impairment, likely by damaging mitochondrial energy generation. Autophagy was significantly activated in sperm when they were under oxidative stress, as evidenced by the upregulation of p62 and the increased conversion of LC3 as well as the upregulation of several autophagy-related proteins, such as charged multivesicular body protein 2a, mitochondrial import receptor subunit TOM22 homolog, and WD repeat domain phosphoinositide-interacting protein 2. Additionally, fluorescent staining indicated the occurrence of apoptosis and necrosis in both H2O2-treated sperm and post-thaw sperm. The cell death process can be suppressed when CoQ10 is introduced, which consolidates the view that ROS could be the major contributor to sperm cryoinjury. The freeze-thaw process could also initiate sperm premature capacitation, demonstrated by the prominent increase in tyrosine phosphorylated proteins, verified with anti-phosphotyrosine antibody and immunofluorescence assays. The upregulation of capacitation-related proteins, such as hyaluronidase 3 and Folate receptor alpha, supported this finding. LARGE SCALE DATA: The data underlying this article are available in the article and its online supplementary material. LIMITATIONS, REASONS FOR CAUTION: The semen samples were obtained exclusively from young, healthy, and fertile males with progressive motility exceeding 60%, which might overemphasize the positive effects while possibly neglecting the negative impacts of cryoinjury. Additionally, the H2O2 treatment conditions in this study may not precisely mimic the oxidative stress experienced by sperm after thawing from cryopreservation, potentially resulting in the omission of certain molecular alterations. WIDER IMPLICATIONS OF THE FINDINGS: This study provides substantial proteomic data for a comprehensive and deeper understanding of the impact of cryopreservation on sperm quality. It will facilitate the design of optimal protocols for utilizing cryopreserved sperm to improve applications, such as ART, and help resolve various adverse situations caused by chemotherapy, radiotherapy, and surgery. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by grants from the Major Innovation Project of Research Institute of National Health Commission (#2022GJZD01-3) and the National Key R&D Program of China (#2018YFC1003600). All authors declare no competing interests. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Preservação do Sêmen , Sêmen , Masculino , Humanos , Espécies Reativas de Oxigênio/metabolismo , Sêmen/metabolismo , Motilidade dos Espermatozoides , Peróxido de Hidrogênio , Proteômica , Espectrometria de Massas em Tandem , Espermatozoides/metabolismo , Estresse Oxidativo , Criopreservação/métodos , Preservação do Sêmen/efeitos adversos , Preservação do Sêmen/métodos , Necrose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...